Опрос кнопок avr си. Подключение микроконтроллера

Подключение кнопки к линии порта ввода/вывода

Изучив данный материал, в котором все очень детально и подробно описано с большим количеством примеров, вы сможете легко овладеть и программировать порты ввода/вывода микроконтроллеров AVR.

  • Часть 2. Подключение светодиода к линии порта ввода/вывода
  • Часть 3. Подключение транзистора к линии порта ввода/вывода
Пример будем рассматривать на микроконтроллере ATMega8 .

Программу писать будем в Atmel Studio 6.0 .

Эмулировать схему будем в Proteus 7 Professional .

Самой распространенной задачей при создании проектов для микроконтроллеров является подключение кнопок. Несмотря на простоту, эта задача имеет существенные, возможно и неочевидные особенности.
Если подключить один из контактов кнопки, например, к общему проводу («земле»), а второй к выбранной линии порта ввода/вывода микроконтроллера, который переключен в режим «Вход», то выяснится, что такой метод не работает. При нажатии кнопки линия порта микроконтроллера соединяется с землей, и программа будет считывать лог.«0» с этой линии порта ввода/вывода, но при отпущенной кнопке вывод микроконтроллера не будет соединен ни с чем, что часто и называют «висит в воздухе». В таком случае программа будет считать с вывода и лог.«0» и лог.«1» случайным образом, так как на не к чему не присоединённую линию порта ввода/вывода будут наводится наводки.
Правильное подключение предполагает, что в разомкнутом состоянии вывод микроконтроллера должен быть соединен через резистор, например с шиной питания, а в замкнутом - с землей, либо наоборот. Сопротивление резистора не должно быть слишком маленьким, чтобы ток, текущий через него при замкнутых контактах кнопки не был слишком большим. Обычно используют значения порядка 10-100 кОм.

Рис: Подключения кнопки с подтянутой шиной питания.

- при отжатой кнопке равно лог.«1»;
- при нажатой кнопке равно лог.«0»;

Рис: Подключения кнопки с подтянутой землей.
При таком подключении состояние линии порта ввода вывода будет:
- при отжатой кнопке равно лог.«0»;
- при нажатой кнопке равно лог.«1»;

- подключения к линии порта ввода/вывода кнопки с подтянутой шиной питания:

#include // Основная программа int main(void) { // Настраиваем порты ввода/вывода DDRB = 0b11111111; //Настраиваем все разряды порта B на режим "Выход" PORTB = 0b00000000; //Устанавливаем все разряды порта B в лог.«0» (На выходе порта напряжение равное GND) DDRD = 0b00000000; //Настраиваем все разряды порта D на режим "Вход" PORTD = 0b11111111; //Устанавливаем все разряды порта D в лог.«1» (На выходе порта напряжение равное Vcc) // Вечный цикл while (1) { //Проверяем: если состояние PD0 лог.«0» то кнопка нажата if ((PIND&(1 << PD0)) == 0) { //Состояние PB0 устанавливаем в лог.«1» PORTB |= (1 << PB0); } else { //Состояние PB0 устанавливаем в лог.«0» PORTB &= ~(1 << PB0); } } }

- подключения к линии порта ввода/вывода кнопки с подтянутой землей:

// Подключаем внешние библиотеки #include #include // Основная программа int main(void) { // Настраиваем порты ввода/вывода DDRB = 0b11111111; //Настраиваем все разряды порта B на режим "Выход" PORTB = 0b00000000; //Устанавливаем все разряды порта B в лог.«0» (На выходе порта напряжение равное GND) DDRD = 0b00000000; //Настраиваем все разряды порта D на режим "Вход" PORTD = 0b11111111; //Устанавливаем все разряды порта D в лог.«1» (На выходе порта напряжение равное Vcc) // Вечный цикл while (1) { //Проверяем: если состояние PD0 лог.«1» то кнопка нажата if ((PIND&(1 << PD0)) == 1) { //Состояние PB0 устанавливаем в лог.«1» PORTB |= (1 << PB0); } else { //Состояние PB0 устанавливаем в лог.«0» PORTB &= ~(1 << PB0); } } }

Обновлено 14.05.15. Здравствуйте дорогие друзья. В этой статье пойдет речь о кнопках и методе борьбы с дребезгом. В прошлой статье я рассказывал о первом своем устройстве — анализаторе, где были применены кнопки, поэтому пора рассмотреть тонкости их работы. Материала в интернете куча, но каждый индивидуальный взгляд на решение вопроса увеличивает скорость понимания данного направления. Поэтому я и решил написать. Ну что ж перейдем к кнопкам. Зачем нужны кнопки? К примеру вы создаете тот же , но для гибкости устройства необходимо менять граничные уровни напряжения, т.к. сеть у каждого очень индивидуальна, к сожалению. Вот тут и приходят на помощь кнопки.

Кнопка -это механическое устройство для передачи сигнала/ввода информации путём замыкания или размыкания двух или более контактов. По сути своей является датчиком внешнего физического воздействия. Не будем внедряться в курс электротехники самое главное нам необходимо знать что они бывают фиксирующие и не фиксирующиеся, а контакты кнопок бывают нормально замкнутые и разомкнутые, все дальше в лес не пойдем.

В основном применяют не фиксирующиеся нормально разомкнутые, но это решение строго личное, что и как использовать. Я дальше буду писать про нормально разомкнутые. Подключить кнопку к микроконтроллеру AVR , очень просто на рисунке ниже представлена схема подключения. В данном случае, просто подсоединяем один конец к ножке МК, а второй вывод к земле либо к питанию. Не забываем задействовать внутренний подтягивающий резистор для исключения помех от наводок, даже тем же пальцем. Принцип следующий настраиваем порт как вход т.е. регистр DDRx выставляем в 0, далее подтягиваем внутренние резисторы, т.е. выставляет регистр PORTx в1.

А далее алгоритм опроса, вот здесь он может быть очень индивидуален, ну во первых если нам необходимо просто ввести данные вначале программы и далее кнопки недолжны реагировать, то тут можно поместить опрос в циклическое условие, например ниже представлен кусочек кода моей программы на СИ для двух кнопок.

while ((e == 0)&&(e1 == 0)) // Начало цикла, берем любые переменные, к примеру равные нулю
// Далее начинается обработка кода, пока не поменяется, хотя бы одно значение переменной на истинно
{
if ((PIND & 0×20) == 0) // здесь мы нажали на кнопку, и в данном случае на пине 5 порта установился 0. Ниже небольшой код по обработке дребезга контактов, о нем написал чуть ниже.
{
_delay_ms (50); // Устранение дребезга клавиш
if ((PIND & 0×20) == 0) // Опять проверяем нажатие
e++; //Увеличиваем на 1
…… ; // Здесь выполняется необходимая нам команда
while ((PIND & 0×20) == 0) //Все ждем отпускание кнопки
{}
} // Выходим из условия
else {}; //можно и неиспользовать, пустая комманда, даже занимающая сокото там тактов
if ((PIND & 0×40) == 0) // а здесь мы нажал на кнопку с2, ну и т.д.
{
_delay_ms (50);
if ((PIND & 0×40) == 0)
e1++;
……;
while ((PIND & 0×40) == 0)
{}
}
else {};
……;
}; // выходим из циклического условия если мы нажали хотя бы одну кнопку

Данный код представляет примерный подход опроса двух кнопок. Алгоритм может меняться как пожелает фантазия. Но самое главное что в коде опроса должен присутствовать антидребезговый код. Что это? Дребезг это явление возникает в переключателях, которое представляет собой в момент переключения случайные многократные неконтролируемые замыкания и размыкания контактов и длятся они от десятков до сотен миллисекунд. На рисунке ниже у нас пример дребезга. Т.к. в протеусе все идеально, то пришлось дорисовать реальность – дребезг красным. Что у нас получается, МК посчитает, перед переходом на другую команду в момент переключения кнопки любое состояние из полосы неопределенности 0 или 1 которая возникает при колебаниях за счет дребезга контактов. Т.е. выходит угадал не угадал… Техника требует точности. Борются двумя методами, первый для компенсации дребезга применяют переключатели с обратной связью, с характеристикой в виде прямоугольной петли гистерезиса и т. д., второй программный метод. Этот метод мы и рассмотрим. В коде выше есть комментарий //Устранение дребезга клавиш . к строке _delay_ms (50); я взял 50 мс, но для пущей уверенности можно и сто а вообще надо подстраиваться под свою разработку. В коде после задержки, когда колебания затухли, опять сравнивается состояние. Вот таким нехитрым методом происходит опрос кнопок.

Давайте рассмотрим случай когда кнопка должна использоваться на протяжении всего времени работы устройства. Здесь нам на помощь приходят прерывания, например их можно использовать внешнее прерывание. К примеру подключаем кнопку к выводу INT0, другой вывод к земле, здесь зависит от определения условий генераций внешних прерывания и от типа МК. Читайте даташит. Порт также настраиваем на вход, подтягиваем резистор. В нормальном состоянии, когда кнопка разомкнута на выводе присутствует 1. В момент замыкания на вывод приходит 0, где по спадающему фронту (настройка) запускается обработчик прерываний. Для запуска внешнего прерывания необходимо флаг I регистра SREG установить в 1. При возникновения прерывания этот флаг аппаратно сбрасывается. Если мы хотим вызывать вложенные прерывания то необходимо программно установить этот флаг. При выходе из обработчика необходимо выполнить комманду reti; , которая установит этот флаг в 1. Например в был описан способ считывания кнопок в прерывании, только уже используя АЦП.

Ниже приведен код для работы с внешним прерыванием.

GICR =0×40; //Управляющий регистр для разрешения/запрещения прерываний. Разрешаем внешние прерывание INT0.
MCUCR = 0×02; //Конфигурационный регистр для выбора условий генераций внешнего прерывания. По спадающему фронту.
sei (); //установка флага I регистра SREG в 1. Разрешение общего прерывания. Должен быть обязательно установлен.
SIGNAL (SIG_INTERRUPT0 ) //Обработчик прерывания по вектору внешнего прерывания. Данные векторы хорошо описаны в Шпаке для среды WinAVR.
{ //Здесь пишем необходимый нам код при нажатии на кнопку }
//Далее обработчик прерывания заканчивает свою работу, и программа возвращается в основной цикл.

Также наверное стоит упомянуть о регистре GIFR, флаги которого используются для индикации прерываний. Кому необходимо читаем даташит.Способов использования прерываний для кнопок куча, поэтому читаем, подбираем… На этом все. В следующей статье поговорим об использовании памяти EEPROM. Всем пока.

Сегодня мы расширим свой кругозор по изучению работы портов микроконтроллера и изучим второе назначение порта — работу на вход. И для изучения работы на вход мы применим обычную тактовую кнопку.

Как всегда, создадим проект в Atmel Studio, выберем Atmega8A, назовем проект Test04 и код также в main.c, как обычно, скопируем с проекта предыдущего урока.

В качестве подопытного порта давайте возьмём порт B. Можно с успехом использовать любой порт. И в качестве ножки возьмем нулевую ножку. Итак у нас ножка B0.

Также опять мы соберём проект, скопируем и переименуем файл протеуса, откроем его и в свойствах контроллера покажем путь к новому проекту. Запустим на выполнение и убедимся, что всё работает.

Добавим кнопку в протеусе, для этого в поиске компонентов найдём Button

Затем подключим нашу кнопку вот таким вот образом к ножке B0 контроллера

Судя по данной схеме, когда кнопка будет в нажатом состоянии, то Ножка PB0 у нас будет иметь низкий логический уровень, а при отжатом — непонятный уровень, поэтому мы применим подтягивающий к питанию резистор, который можно не паять физически, а подключить опционально определенной командой.

Для этого мы, во-первых настроим порт B. Мы можем объявить все ножки порта B на вход, так как нам не важны настройки остальных ножке, ибо мы их не используем

DDRD = 0xFF;

DDRB = 0x00;

В случае, когда мы работали с портом D на выход, биты регистра PORTD отвечали за уровень на соответствующих ножках. А в случае, когда порт инициализирован на вход, как наш порт B, то биты регистра PORTB будут уже отвечать за подтягивание к соответствующим ножкам порта резисторов на шину питания. Если будет логическая единица, то регистр будет подтягиваться, а если логический ноль — то не будет. Поэтому мы в 0 бите регистра установим 1

PORTD = 0b00000001;

PORTB = 0b00000001;

Соберём код и запустим его в протеусе. Мы видим, что на ножке B0 у нас установилась логическая 1 , а если мы нажмём кнопку, то увидим, что на ней будет логический 0 , о чём свидетельствует синий цвет квадратиков на ножке и на кнопке.

В бесконечном цикле закомментируем весь код. В видеоверсии урока показано, как данную операцию можно выполнить одним движением (выделяем весь текст, который мы хотим закомментировать, затем нажимаем одновременно Shift и обычный слэш (не обратный))

// for(i=0;i<=7;i++)

// {

// PORTD = (1<

// _delay_ms(500);

// }

В данном цикле мы и будем отслеживать состояние ножки PB0. Делается это с помощью определения состояния соответствующего бита в регистре PINB, который собственно за это и отвечает.

Чтобы нам следить за каким-либо действием или состоянием, нам необходимо будет обработать условие.

Условие в языке C добавляется с помощью команды if .

И в качестве условия мы возьмём состояние ножки 0 порта B или состояние бита 0 регистра PINB .

Как же можно получить состояние одного бита, ведь в языке C в отличие от ассемблера нет битовых операций?

Можно пойти на хитрость и применить вот такую конструкцию PINB &0b00000001 .

Данная конструкция нам и проверит нулевой бит. То есть если в регистре PINB также будет 1 в нулевом его бите, то независимо от состояния остальных битов в данном регистре мы получим ненулевой результат, что также является истиной. То есть если ни с чем не сравнивать в условии результат, то условие эквивалентно сравниванием с нулём, только наоборот. Для истинности результат должен быть ненулевым — (результат!=0 ).

Но нам с вами наоборот нежелательно, чтобы ножка была в высоком логическом состоянии, так как кнопка у нас подключена к общему проводу. Поэтому мы должны поставить отрицание и написать код следующим образом

while (1)

if (!( PINB &0b00000001))

{

}

else

{

}

Теперь нам необходимо добавить тело условия. При выполнении условия, что кнопка нажата, мы будем зажигать светодиод на ножке D0. А если условие не будет выполняться (кнопка будет отжата), то мы будем его гасить. Также мы погасим данный светодиод и в начале программы. Поэтому получим следующий код

DDRB =0x00;

PORTD =0b00000000 ;

PORTB =0b00000001;

while (1)

If (!(PINB &0b00000001))

PORTD =0b00000001;

Else

PORTD =0b00000000;

Теперь давайте пересоберём проект и пойдём в протеус смотреть, удалось ли нам что-то.

Чтобы у нас при сборке не было даже предупреждений, уберём объявление переменной i, так как она в коде не используется

int main ( void )

// unsigned char i;

Unsigned char butcount =0;

Запустим проект в протеусе и увидим, что при нажатии на кнопку у нас начинает светиться самый верхний светодиод

Казалось бы, что мы своей цели уже добились. Но чтобы сделать наш код более ответственным и совершенным, мы просто обязаны провести борьбу с дребезгом контактов, так как такое явление может иметь место, это только в протеусе всё идеально, на практике такое бывает не всегда.

И чтобы это как-то отследить и определить, что это было именно нажатие, а не дребезг, то мы будим отслеживать нажатие некоторое время, ну или некоторое количество тактов или циклов. Для этого в начале функции main() до бесконечного цикла мы добавим другую переменную (i нам ещё пригодится и мы её портить не будем). Назовём мы переменную butcount , так как имя переменной должно как-то само за себя говорить и тем самым достигается ещё большая читабельность кода

// unsigned char i;

unsigned char butcount =0;

И чтобы воспользоваться данной переменной, мы применим ещё одно условие. И у нас будет условие в условии. Это всё допустимо и очень широко используется. И в зависимости от этого условия мы данную переменную будем наращивать (инкрементировать). Условием будет у нас достижение данной переменной определённой величины. То есть попробуем сделать так, чтобы значение переменной не достигало 5

if (!( PINB &0b00000001))

if ( butcount < 5)

{

butcount ++;

}

А когда значение данной переменной достигнет значения 5, то мы уже в данный цикл не попадём, а попадём мы в тело оператора else , который мы сейчас и добавим и в его теле напишем следующий код

Butcount ++;

else

PORTD =0b00000001;

То есть мы как раз после достижения пятёрки и будем обрабатывать нажатие кнопки и включать на нулевой ножке порта D высокое состояние.

По идее, здесь мы должны обнулить нашу переменную, но мы это будем делать также постепенно, используя тело оператора else, только другого — того, который у нас был и тело которого выполняется при низком уровне на ножке, к которой подключена кнопка. Вот таким будет его тело

else

if (butcount >0)

{

butcount —;

}

else

{

PORTD =0b00000000;

}

Данный код чем то похож на предыдущий, только здесь у нас идёт, наоборот декрементирование переменной, и как только её значение опять достигнет нуля, то мы и попадём в обработку отжатия кнопки, тем самым полностью избавимся от дребезга. И чем старее и некачественнее будет наша тактовая кнопка, тем большее значение переменной в условии мы будем применять.

Давайте теперь соберём проект и проверим его работу сначала в протеусе, а затем и на практике. Выглядит это приблизительно так. Интереснее конечно это смотреть в видеоуроке

Смотреть ВИДЕОУРОК

Post Views: 13 084

Казалось бы простая тема, а однако в комментах меня завалили вопросами как подключить микроконтроллер. Как подключить к нему светодиод, кнопку, питание. Что делать с AGND или AREF . Зачем нужен AVCC и все в таком духе. Итак, раз есть вопросы, значит тема не понятна и надо дать по возможности исчерпывающий ответ. Все описываю для контроллеров AVR, но для каких нибудь PIC все очень и очень похоже. Т.к. принципы тут едины.

Питание
Для работы микроконтроллеру нужна энергия — электричество. Для этого на него естественно нужно завести питалово. Напряжение питание у МК Atmel AVR разнится от 1.8 до 5 вольт, в зависимости от серии и модели. Все AVR могут работать от 5 вольт (если есть чисто низковольтные серии, то просьба уточнить в комментах, т.к. я таких не встречал). Так что будем считать что напряжение питания контроллера у нас всегда 5 вольт или около того. Плюс напряжения питания обычно обозначается как Vcc . Нулевой вывод (а также Земля, Корпус, да как только его не называют) обозначают GND . Если взять за пример комповый блок питания. То черный провод это GND (кстати, земляной провод традиционно окрашивают в черный цвет), а красный это +5, будет нашим Vcc . Если ты собираешься запитать микроконтроллер от батареек, то минус батареек примем за GND , а плюс за Vcc (главное чтобы напряжение питания с батарей было в заданных пределах для данного МК, позырь в даташите. Параметр обычно написан на первой странице в общем описании фич:

Operating Voltages
–1.8 — 5.5V (ATtiny2313V)
–2.7 — 5.5V (ATtiny2313)
Speed Grades
–ATtiny2313V: 0 — 4 MHz @ 1.8 — 5.5V, 0 — 10 MHz @ 2.7 — 5.5V
–ATtiny2313: 0 — 10 MHz @ 2.7 — 5.5V, 0 — 20 MHz @ 4.5 — 5.5V

Обрати внимание, что есть особые низковольтные серии (например 2313V низковльтная) у которых нижня граница напряжения питания сильно меньше. Также стоит обратить внимание на следующий пункт, про частоты. Тут показана зависимость максимальной частоты от напряжения питания. Видно, что на низком напряжении предельные частоты ниже. А низковольтные серии раза в два медленней своих высоковольтных коллег. Впрочем, разгону все процессоры покорны;)))))

Для работы контроллерам серии AVR достаточно только питания. На все входы Vcc надо подать наши 5 (или сколько там у тебя) вольт, а все входы GND надо посадить на землю. У микроконтроллера может быть много входов Vcc и много входов GND (особенно если он в квадратном TQFP корпусе. У которого питалово со всех сторон торчит). Много выводов сделано не для удобства монтажа, а с целью равномерной запитки кристалла со всех сторон, чтобы внутренние цепи питания не перегружались. А то представь, что подключил ты питалово только с одной стороны, а с другой стороны чипа навесил на каждую линию порта по светодиоду, да разом их зажег. Внутренняя тонкопленочная шина питания, офигев от такой токовой нагрузки, испарилась и проц взял ВНЕЗАПНО и без видимых, казалось бы, причин отбросил копыта. Так что ПОДКЛЮЧАТЬ НАДО ВСЕ ВЫВОДЫ Vcc и GND . Соединить их соответственно и запитать.

Отдельные вопросы вызвают AGND и AVCC — это аналоговая земля и питание для Аналого-Цифрового Преобразователя. АЦП это очень точный измеритель напряжения, поэтому его желательно запитать через дополнительные фильтры, чтобы помехи, которые не редки в обычной питающей цепи, не влияли на качество измерения. С этой целью в точных схемах проводят разделение земли на цифровую и аналоговую (они соединены должны быть только в одной точке), а на AVCC подается напряжение через фильтрующий дроссель. Если ты не планируешь использовать АЦП или не собираешься делать точные измерения, то вполне допустимо на AVCC подать те же 5 вольт, что и на Vcc , а AGND посадить на ту же землю что и все. Но подключать их надо обязательно!!! ЕМНИП от AVCC питается также порт А.

Warning!!!

В чипе Mega8 похоже есть ошибка на уровне топологии чипа — Vcc и AVcc связаны между собой внутри кристалла. Между ними сопротивление около (!!!) 5Ом Для сравнения, в ATmega16 и ATmega168 между Vcc и AVcc сопротивление в десятки МЕГА ом! В даташите на этот счет никаких указаний нет до сих пор, но в одном из топиков за 2004 год на AVRFreaks сказано, что люди бодались с цифровым шумом АЦП, потом написали в поддержку Atmel мол WTF??? А те, дескать, да в чипе есть бага и Vcc и AVcc соединены внутри кристалла. В свете этой инфы, думаю что ставить дроссель на AVcc для Mega8 практически бесполезно. Но AVcc запитывать надо в любом случае — кто знает насколько мощная эта внутренняя связь?

Простейшая схема подключения Микроконтроллера AVR приведена ниже:

Как видишь, добавился дроссель в цепь питания AVCC , а также конденсаторы. Хорошим тоном является ставить керамический конденсатор на сотню нанофарад между Vcc и GND у каждой микросхемы (а если у микрухи много вход питания и земель, то между каждым питанием и каждой землей) как можно ближе к выводам питания — он сгладит краткие импульсные помехи в шине питания вызыванные работой цифровых схем. Конденсатор на 47мКФ в цепи питания сгладит более глубокие броски напряжения. Кондесатор между AVcc и GND дополнительно успокоит питание на АЦП .

Вход AREF это вход опорного напряжения АЦП . Туда вообще можно подать напряжение относительно которого будет считать АЦП , но обычно используется либо внутренний источник опорного напряжения на 2.56 вольта, либо напряжение на AVCC , поэтому на AREF рекомендуется вешать конденсатор, что немного улучшит качество опорного напряжения АЦП (а от качества опоры зависит адекватность показаний на выходе АЦП ).

Схема сброса
Резистор на RESET . Вообще в AVR есть своя внутренняя схема сброса, а сигнал RESET изнутри уже подтянут резистором в 100кОм к Vcc . НО! Подтяжка это настолько дохлая, что микроконтроллер ловит сброс от каждого чиха. Например, от касания пальцем ножки RST , а то и просто от задевания пальцем за плату. Поэтому крайне рекомендуется RST подтянуть до питания резистором в 10к. Меньше не стоит, т.к. тогда есть вероятность, что внутрисхемный программатор не сможет эту подтяжку пересилить и прошить МК внутри схемы не удасться. 10к в самый раз.

Есть еще вот такая схема сброса:

Она замечательна чем — при включении схемы конденсатор разряжен и напряжение на RST близко к нулю — микроконтроллер не стартует, т.к. ему непрерывный сброс. Но со временем, через резистор, конденсатор зарядится и напряжение на RST достигнет лог1 — МК запустится. Ну, а кнопка позволяет принудительно сделать сброс если надо.

Задержка будет примерно T=R*C для данного примера — около секунды. Зачем эта задержка? Да хотя бы для того, чтобы МК не стартовал раньше чем все девайсы платы запитаются и выйдут на установившийся режим. В старых МК (АТ89С51 , например) без такой цепочки, обеспечивающей начальный сброс, МК мог вообще не стартануть.

В принципе, в AVR задержку старта, если нужно, можно сделать программно — потупить с пол секунды прежде чем приступать к активным действиям. Так что кондер можно выкинуть нафиг. А кнопку… как хочешь. Нужен тебе внешний RESET ? Тогда оставь. Я обычно оставляю.

Источник тактового сигнала
Тактовый генератор это сердце микроконтроллера. По каждому импульсу происходит какая нибудь операция внутри контроллера — гоняют данные по регистрам и шинам, переключаются выводы портов, щелкают таймеры. Чем быстрей тактовая частота тем шустрей МК выполняет свои действия и больше жрет энергии (на переключения логических вентилей нужна энергия, чем чаще они переключаются тем больше энергии надо).

Импульсы задаются тактовым генератором встроенным в микроконтроллер. Впрочем может быть и внешний генератор, все очень гибко конфигурируется! Скорость с которой тикает внутренний генератор зависит от настроек микроконтроллера и обвязки.


Генератор может быть:

  • Внутренним с внутренней задающей RC цепочкой.
    В таком случае никакой обвязки не требуется вообще! А выводы XTAL1 и XTAL2 можно не подключать вовсе, либо использовать их как обычные порты ввода вывода (если МК это позволяет). Обычно можно выбрать одно из 4х значений внутренней частоты. Этот режим установлен по дефолту .
  • Внутренним с внешней задающей RC цепочкой.
    Тут потребуется подключить снаружи микроконтроллера конденсатор и резистор. Позволяет менять на ходу тактовую частоту, просто подстраивая значение резистора.
  • Внутренним с внешним задающим кварцем.
    Снаружи ставится кварцевый резонатор и пара конденсаторов. Если кварц взят низкочастотный (до 1МГц) то конденсаторы не ставят.
  • Внешним.
    С какого либо другого устройства идет прямоугольный сигнал на вход МК, который и задает такты. Полезен этот режим, например, если надо чтобы у нас несколько микроконтроллеров работали в жестком синхронизме от одного генератора.

У разных схем есть разные достоинства:
В случае внутренней RC цепи мы экономим место на плате, нам не нужно дополнительных деталек, но мы не можем развить максимальную частоту и частота немного зависит от температуры, может плавать.

У внешнего кварца отличные показатели точности, но он стоит лишних 15 рублей и требует дополнительных деталей и, что самое обидное, часто съедает пару ног I/O. Также на внешнем же кварце можно добиться максимальной производительности от МК. Частота МК определяется частотой на которую заточен выбранный кварц. Внешная RC цепь позволяет тикать генератору МК быстрей чем от внутренней, стоит дешевле кварца, но имеет те же проблемы со стабильностью частоты, что и внутренняя RC цепь.

Способы тактования МК описаны в даташите в разделе System Clock and Clock Options и всецело определяются конфигурацией Fuse Bit’s . Пока же я настоятельно рекомендую НЕ ТРОГАТЬ FUSE пока ты не будешь твердо знать что ты делаешь и зачем. Т.к. выставив что нибудь не то, можно очень быстро превратить МК в кусок бесполезного кремния, вернуть к жизни который будет уже очень непросто (но возможно!)

Подключение к микроконтроллеру светодиода и кнопки
Сам по себе, без взаимодействия с внешним миром, микроконтроллер не интересен — кому интересно что он там внутри себя тикает? А вот если можно как то это отобразить или на это повлиять…

Итак, кнопка и светодиод подключаются следующим образом:


Для кнопки надо выбраную ножку I/O подключить через кнопку на землю. Сам же вывод надо сконфигурировать как вход с подтяжкой (DDRxy=0 PORTxy=1). Тогда, когда кнопка не нажата, через подтягивающий резистор, на входе будет высокий уровень напряжения, а из бит PINху будет при чтении отдавать 1. Если кнопку нажать, то вход будет положен на землю, а напряжение на нем упадет до нуля, а значит из PINxy будет читаться 0. По нулям в битах регистра PINх мы узнаем что кнопки нажаты.

Пунктиром показан дополнительный подтягивающий резистор. Несмотря на то, что внутри AVR на порт можно подключить подтяжку, она слабоватая — 100кОм. А значит ее легко придавить к земле помехой или наводкой, что вызовет ложное срабатывание. А еще эти внутренние подтягивающие резисторы очень любят гореть от наводок. У меня уже с десяток микроконтроллеров с убитыми PullUp резисторами. Все работает, но только нет подтяжки — сгорела. Вешаешь снаружи резистор и работает как ни в чем ни бывало. Поэтому, для ответственных схем я настоятельно рекомендую добавить внешнюю подтяжку на 10кОм — даже если внутреннюю накроет, внешняя послужит. В процессе обучения на это можно забить.

Светодиод подключается на порт двумя способами. По схеме Порт-земля или Порт-Питание . В первом случае для зажигания диода надо выдать в порт лог1 — высокий уровень (примерно равен Vcc). Во втором случае для зажжения диода требуется выдать в порт лог0 — низкий уровень (около нуля). Для AVR разницы вроде бы нет, а вот многие старые серии микроконтроллеров вниз тянули куда лучше чем вверх, так что схема Порт-Питание распространена чаще. Я применяю и ту и другую схему исходя из удобства разводки печатной платы. Ну, а на программном уровне разницы особой нет.
Вывод порта для работы со светодиодом надо сконфигурировать на выход (DDRxy=1) и тогда в зависимости от значения в PORTxy на ножке будет либо высокий либо низкий уровень напряжения.

Светодиод надо подключать через резистор . Дело в том, что прямое сопротивление светодиода очень мало. И если не ограничивать ток через него, то он просто напросто может сгореть нафиг. Либо, что вероятней, пожечь вывод микроконтроллера, который, к слову, может тянуть что то около 20-30мА. А для нормального свечения обычному светодиоду (всякие мы не рассматриваем сейчас, эти монстры могут и ампер сожрать) надо около 3…15мА.

Так что, на вскидку, считаем:

  • Напряжение на выходе ноги МК около 5 вольт, падение напряжени на светодиоде обычно около 2.5 вольт (выше нельзя, иначе диод сожрет тока больше чем надо и подавится, испустив красивый дым)
  • Таким образом, напряжение которое должен взять на себя ограничительный резистор будет 5-2.5 = 2.5В.
  • Ток нам нужен 5мА — нефига светодиод зря кормить, нам индикация нужна, а не освещение:)
  • R=U/I= 2.5/5E-3 = 500Ом. Ближайший по ряду это 510 Ом. Вот его и возьмем. В принципе, можно ставить от 220 Ом до 680 Ом что под руку попадется — гореть будет нормально.

Если надо подключить много светодиодов, то на каждый мы вешаем по собственному резистору. Конечно, можно пожадничать и поставить на всех один резистор. Но тут будет западло — резистор то один, а диодов много! Соответственно чем больше диодов мы запалим тем меньше тока получит каждый — ток от одного резистора разделится между четырьмя. А поставить резистор поменьше нельзя — т.к. при зажигании одного диода он получит порцию тока на четверых и склеит ласты (либо пожгет порт).

Немного схемотехнических извратов или пара слов о экономии выводов

То что не удается запаять приходится программировать. (С) народная мудрость.

Очень часто бывает так, что вроде бы и памяти контроллера под задачу хватает с лихвой, и быстродействия через край, а ножек не хватает. Вот и приходится ставить избыточный и более дорогой микроконтроллер только потому, что у него банально больше выводов. Покажу парочку примеров как можно за счет усложнения программного кода сэкономить на железе.

Во главу угла такой экономии обычно ставится принцип динамического разделения назначения выводов во времени. То есть, например, вывод может работать на какую-либо шину, а когда шина не активна, то через этот же вывод можно проверить состояние кнопки, или что нибудь передать по другой шине. Быстро (десятки или даже тысячи раз в секунду) переключаясь между двумя разными назначениями можно добиться эффекта «одновременной работы».

Главное, тут следовать двум правилам:

  • Два разных применения не должны мешать друг другу т.е. разделение во времени должно быть построено таким образом, чтобы смежная функция не искажала результат работы проверяемой функции.
  • Ни в коем случае нельзя допускать конфликта уровней напряжений.

Приведу пример:

  • У есть у нас вывод на который повешан выход с некого датчика и кнопка. Выход с датчика может быть 0, 1 в активном режиме и Hi-Z когда на датчик не приходит сигнал Enable.
  • Кнопка же дает на линию жесткий 0, путем короткого замыкания.

Как это должно работать:
Скажем, основную часть времени у нас ввод микроконтроллера настроен на вход Hi-Z и мы снимаем показания с датчика на который подан еще и сигнал Enable. Когда нам надо опросить кнопку, то мы отбираем у датчика Enable и его выходы становятся в режим Hi-Z и нам не мешают. Вывод микроконтроллера мы переводим в режим Pull-Up и проверяем нет ли на входе нуля — сигнал нажатой кнопки. Проверили? Переводим вход МК в Hi-Z вход и подаем Enable на датчик снова. И так много раз в секунду.

Тут у нас возникает два противоречия:

  • Логическое противоречие
    0 на линии может быть в двух случаях от датчика или от кнопки. Но в этом случае, пользуясь здравым смыслом и требуемым функционалом, мы логическое противоречие можем не брать во внимание.

    Просто будем знать, что нажатие кнопки искажает показания датчика, а значит когда датчик работает — мы кнопку жать не будем. А чтобы показания датчика не принять за нажатие кнопки мы, в тот момент когда ждем данные с датчика, просто не опрашиваем кнопку. От тупых действий, конечно, это не защитит. Но для упрощения примера защиту от дурака я сейчас во внимания не беру.

  • Электрическое противоречие
    Если датчик выставит 1, а мы нажмем кнопку, то очевидно, что GND с Vcc в одном проводе не уживутся и кто нибудь умрет. В данном случае умрет выход датчика, как более слабый — куда там хилому транзистору тягаться с медной кнопкой.

    Организационными методами такое противоречие не решить — на глаз нельзя определить напряжение на линии и решить можно жать кнопку или нет. Да и в каком месте сейчас программа можно тоже только догадываться. Поэтому решать будем схемотехнически.
    Добавим резистор в цепь кнопки, резистор небольшой, рассчитывается исходя из максимального тока самого слабого вывода линии.

    Если у нас, например, вывод датчика может дать не более 10мА, то резистор нужен такой, чтобы ток через него от Vcc до GND не превышал этой величины. При питании 5 вольт это будет 510Ом. Теперь, даже если на линии со стороны датчика будет лог1, высокий уровень, то нажатие на кнопку не вызовет даже искажения логического уровня т.к. резистор рассчитан с учетом максимальной нагрузки порта

Пример получился немного сумбурный, но суть думаю понятна. Я хочу чтобы ты увидел и понял не только как делается, но и зачем это делается:)

Ну и несколько примеров нескольких функций на одной ноге:
Во-первых, ISP разьем . Я уже давным давно забыл что такое тыкать микроконтроллер вначале в колодку программатора, потом в плату, потом обратно и так по многу раз, пока прогу не отладишь. У меня на плате торчат 6 выводов ISP разьема и при отладке программатор вечно воткнут в плату, а программу я перешиваю порой по нескольку раз в 10 минут. Прошил — проверил. Не работает? Подправил, перепрошил еще раз… И так до тех пор пока не заработает. Ресурс у МК на перепрошивку исчисляется тысячами раз. Но ISP разьем сжирает выводы. Целых 3 штуки — MOSI, MISO, SCK.

В принципе, на эти выводы можно еще повесить и кнопки. В таком случае никто никому мешать не будет, главное во время прошивки не жать на эти кнопки. Также можно повесить и светодиоды (правда в этом случае простейший может дать сбой, а вот молодцом!) тогда при прошивке они будут очень жизнерадостно мерцать:)))

На линии под ISP можно повесить и что нибудь другое, главное, чтобы при прошивке это ЧТОТО не начало ВНЕЗАПНО чудить . Например, управление стокилограммовым манипулятором висит на линии ISP и во время прошивки на него пошла куча бредовых данных — так он может свихнуться и кому нибудь бошку разнести. Думать надо, в общем. А вот с каким нибудь , который работает по шинному интерфейсу прокатит такая схема:

Переключаем выход с 0 на 1 и зажигаем то верхний то нижний диод. Если надо зажечь оба, то мы просто переводим вывод микроконтроллера в режим Hi-Z и словно нет его, а диоды будут гореть сквозным током. Либо быстро быстро переключать диоды между собой, в этом случае на глаз они будут оба гореть. Недостаток схемы очевиден — диоды нельзя погасить. Но если по задумке хотя бы один должен гореть, то почему бы и нет? UPD: Тут подумал, а ведь можно подобрать светодиоды и резисторы так, чтобы их суммарное падение напряжения было на уровне напряжения питания, а суммарные резисторы в таком случае загонят ток в такой мизер, что когда нога в Hi-Z то диоды вообще гореть не будут. По крайней мере на глаз это будет не заметно совсем. Разве что в кромешной тьме.

Следующий вариант он не дает экономию ножек, зато позволяет упростить разводку печатной платы, не таща к двум диодам еще и шину питания или земли:

А применив сходную тактику к кнопкам можно либо упростить разводку, либо по трем ножкам развести 6 кнопок.
Тут тоже все просто — одна нога дает подтяг, вторая косит под землю. Нажатие кнопки дает просадку напряжения на подтягивающей ножке. Это чует программа, поочередно опрашивающая каждую кнопку. Потом роли ножек меняются и опрашивается следующая кнопка.

В шестикнопочном режиме ситуация схожая — одна ножка дает подтяг, другая землю, а третья прикидывается ветошью Hi-Z и не отсвечивает. Но тут есть один побочный эффект. Например, опрашиваем мы кнопку «В». Для этого у нас верхняя линия встает на вход с подтяжкой (PORTxy=1, DDRxy=0), средня дает низкий уровень на выходе (PORTxy=0, DDRxy=1), нижняя не участвует в процессе ибо стоит в Hi-Z (PORTxy=0, DDRxy=0). Если мы нажмем кнопку «В» то верхняя линия в этот момент просядет и программа поймет что нажата кнопка «В», но если мы не будем жать «В», а нажмем одновременно «Е» и «Б» то верхняя линия также просядет, а программа подумает что нажата «В», хотя она там и рядом не валялась. Минусы такой схемы — возможна неправильная обработка нажатий. Так что если девайсом будут пользоваться быдло-операторы, жмущие на все подряд без разбора, то от такой схемы лучше отказаться.

Ну и, напоследок, схема показывающая как можно обьединить кнопку и светодиод:


Работает тоже исключительно в динамике. То есть все время мы отображаем состояние светодиода — то есть выдаем в порт либо 0 (диод горит) либо Hi-Z (диод не горит). А когда надо опросить кнопку, то мы временно (на считанные микросекунды) переводим вывод в режим вход с подтягом (DDRxy=0 PORTxy=1) и слушаем кнопку. Режим когда на выводе сильный высокий уровень (DDRxy=1 PORTxy=1) включать ни в коем случае нельзя, т.к. при нажатии на кнопку можно пожечь порт.

Минусы — при нажатии на кнопку зажигается светодиод как ни крути. Впрочем, это может быть не багой, а фичей:)

Вот такие пироги. А теперь представьте себе прогу в которой реализованы все эти динамические фичи + куча своего алгоритма. Выходит либо бесконечная череда опросов, либо легион всяких флагов. В таких случаях простейшая диспетчеризация или кооперативная это то что доктор прописал — каждый опрос гонишь по циклу своей задачи и не паришься. Зато юзаешь везде какую-нибудь ATTiny2313 и ехидно глядишь на тех кто в ту же задачу пихает Mega8 или что пожирней:)

Я ничего не знаю и боюсь что либо сжечь, что мне делать???

Не бояться и делать. В конце концов, микроконтроллер не такая уж дорогая вещь чтобы сокрушаться по поводу его смерти. Выкинул в помойку и достал из пакетика новый. На худой конец, если совсем уж страшно, то можно купить готовую демоплату на которой все уже спаяно и разведено как надо. Тебе останется только программировать и смотреть результат.

А потом, на примере того как сделана демоплата, попробовать сделать что то свое. Сама же демоплата представляет собой микроконтроллер + немного стартовой периферии, которой хватит на ряд несложных опытов и которая может облегчить подключение и исследование других устройств. Демоплаты есть разные, например фирменные комплексы вроде STK500 или AVR Butterfly или моя которая была спроектированна исходя из моего опыта и на которой будет строится весь дальнейший учебный курс.

Что нужно для того, чтобы стать профессиональным разработчиком программ для микроконтроллеров и выйти на такой уровень мастерства, который позволит с лёгкостью найти и устроиться на работу с высокой зарплатой (средняя зарплата программиста микроконтроллеров по России на начало 2017 года составляет 80 000 рублей). ...

О том, как подать дискретный сигнал на вход микроконтроллера, я рассказывал . Такой подход вполне работоспособен и будет прекрасно выполнять свою миссию, если в качестве источника сигнала будет, например, транзистор или другого микроконтроллера.

Однако, если вы таким образом подключите к входу микроконтроллера кнопку или контакт реле, то здесь вас могут поджидать неожиданные эффекты в виде сбоев работы устройства и разных глюков. А вызваны эти эффекты будут таким явлением, как дребезг контактов .

В этой статье я расскажу о том, как устранить дребезг контактов, подключаемых к микроконтроллера. Но сначала (для тех, кто слышит это словосочетание впервые), расскажу непосредственно о том, что же такое этот самый дребезг контактов.


Дребезг контактов возникает во время замыкания или размыкания контактов. Посмотрите на рисунок:

Изначально контакт разомкнут.

Когда мы начинаем замыкать контакт (нажимаем на кнопку), то замыкание происходит не сразу.

Это нам кажется, что мы нажали на кнопку мгновенно. Однако на самом деле, если растянуть время достаточно сильно, по получится, что мы нажимаем кнопку постепенно. На механическом контакте надо обеспечить достаточное усилие, чтобы он окончательно замкнулся, а контакты, как правило, пружинят, и поэтому какое-то время контакт находится в переходном процессе. То есть быстро-быстро замыкается-размыкается.

Если мы включаем этой кнопкой лампочку, то мы не заметим этот переходный процесс. Нам будет казаться, что лампочка сразу включилась после нажатия кнопки.

Однако быстродействие микроконтроллера таково, что он заметит все (или почти все) замыкания-размыкания переходного процесса. Это будет означать, что программа микроконтроллера столько раз отреагирует на сигнал от кнопки, сколько раз будет изменяться сигнал во время переходного процесса.

А мы то ожидаем, что одно нажатие кнопки - это одно переключение входа микроконтроллера. Но на самом деле это не так. Потому что дребезг контактов вносит свою лепту в усложнение жизни инженеров.

Представьте, что наши кнопки - это клавиатура телефона. Мы нажимаем цифру 8, подразумевая, что эта цифра будет набрана телефоном один раз. Но телефон вместо этого набирает 5 или 10 восьмёрок, потому что разработчики телефона не удосужились предусмотреть защиту от дребезга контактов. Станете вы пользоваться таким телефоном?

Ну и напоследок надо сказать, что время дребезга контактов зависит от качества контактов, и обычно составляет от 10 до 100 мс.

Устранение дребезга контактов

Думаю, уже не надо объяснять, что в случае, если к входам вашего микроконтроллера подключены механические контакты, то ваше устройство должно как-то бороться с дребезгом контактов.

Есть два способа борьбы с дребезгом контактов:

  1. Аппаратный
  2. Программный

Аппаратное подавление дребезга контактов

Аппаратное подавление дребезга - это схемные решения, которые позволяют устранить этот неприятный эффект. Чаще всего это простая RC-цепь, или вообще только один конденсатор.

Принцип работы такой схемы простой: конденсатору требуется какое-то время для зарядки (или разрядки). А пока он полностью не зарядится, на вход микроконтроллера не поступит нужный сигнал. Этого времени хватает на то, чтобы переходный процесс успел завершиться. Таким образом и выполняется подавление дребезга.

Простая схема устранения дребезга контактов приведена на рисунке:

Номиналы элементов приблизительные. По идее надо их рассчитывать для каждого отдельного случая. Но в большинстве случаев они вполне подойдут.

Есть и более сложные схемы подавления дребезга контактов, которые не требуют расчёта, потому что выполняются на цифровых элементах. Например, схема на RS-триггере. Но в устройствах на микроконтроллерах использовать подобные ухищрения нет смысла.

Программное подавление дребезга контактов

Если уж мы используем микроконтроллер, то в подавляющем большинстве случаев нет смысла усложнять схему устройства и встраивать в неё элементы устранения дребезга. Потому что проще и дешевле организовать программное подавление дребезга.

Использовать аппаратное подавление дребезга в устройствах на микроконтроллерах имеет смысл только в очень редких случаях. Например, если микроконтроллер маломощный и даже малейшее расходование его ресурсов не на основную задачу нежелательно.

Самое простое и самое распространённое программное решение для борьбы с дребезгом - это временная задержка. Алгоритм простой:

  1. При изменении уровня сигнала на входе на противоположный включаем таймер (например, на 100 миллисекунд).
  2. После истечения задержки проверяем сигнал. Если он остался изменённым, то считаем, что кнопка нажата (или отпущена - в зависимости от того, какое изменение сигнала обнаружено). Если же он вернулся в исходное состояние, то считаем это помехой и не реагируем на сигнал.

Бывают особые случаи, когда быстрое переключение контактов - это обычное состояние системы. Ну например, если есть какой-то датчик, который по логике работы не может принимать фиксированное значение на длительное время. То есть идёт как бы непрерывный дребезг контактов. И в этом бесконечном потоке нам надо как-то определить, какой же всё-таки сигнал на входе.

В этом случае можно применить следующий алгоритм:

  1. Посчитать количество и/или продолжительность замкнутого и разомкнутого состояния контакта в единицу времени (например, в секунду).
  2. По наибольшему количеству (или времени) определить конечное состояние сигнала.

Например, если за секунду на входе у нас 50 раз была логическая 1, и 20 раз - логический 0, то можно считать, что на входе единица. Разумеется, здесь нужен индивидуальный подход в зависимости от задачи.

Примеры исходных кодов приводить здесь не буду, потому как статья эта не о программировании. Если кому интересно, то способы подключения разных устройств к микроконтроллеру можно найти .