1 колебательный контур. Резонанс напряжений в последовательном колебательном контуре

f 0 = 1 2 π L C {\displaystyle f_{0}={1 \over 2\pi {\sqrt {LC}}}}

Энциклопедичный YouTube

  • 1 / 5

    Например, при начальных условиях φ = 0 {\displaystyle \varphi =0} и амплитуде начального тока решение сведётся к:

    i (t) = I a sin ⁡ (ω t) {\displaystyle i(t)=I_{a}\sin({\omega }t)}

    Решение может быть записано также в виде

    i (t) = I a 1 sin ⁡ (ω t) + I a 2 cos ⁡ (ω t) {\displaystyle i(t)=I_{a1}\sin({\omega }t)+I_{a2}\cos({\omega }t)}

    где I a 1 {\displaystyle I_{a1}} и I a 2 {\displaystyle I_{a2}} - некоторые константы, которые связаны с амплитудой I a {\displaystyle I_{a}} и фазой φ {\displaystyle \varphi } следующими тригонометрическими соотношениями:

    I a 1 = I a cos ⁡ (φ) {\displaystyle I_{a1}=I_{a}\cos {(\varphi)}} , I a 2 = I a sin ⁡ (φ) {\displaystyle I_{a2}=I_{a}\sin {(\varphi)}} .

    Комплексное сопротивление (импеданс) колебательного контура

    Колебательный контур может быть рассмотрен как двухполюсник , представляющий собой параллельное включение конденсатора и катушки индуктивности. Комплексное сопротивление такого двухполюсника можно записать как

    z ^ (i ω) = i ω L 1 − ω 2 L C {\displaystyle {\hat {z}}(i\omega)\;={\frac {i\omega L}{1-\omega ^{2}LC}}}

    Для такого двухполюсника может быть определена т. н. характеристическая частота (или резонансная частота), когда импеданс колебательного контура стремится к бесконечности (знаменатель дроби стремится к нулю).

    Эта частота равна

    ω h = 1 L C {\displaystyle \omega _{h}={\frac {1}{\sqrt {LC}}}}

    и совпадает по значению с собственной частотой колебательного контура.

    Из этого уравнения следует, что на одной и той же частоте может работать множество контуров с разными величинами L и C, но с одинаковым произведением LC. Однако выбор соотношения между L и C зачастую не бывает полностью произвольным, так как обуславливается требуемым значением добротности контура.

    Для последовательного контура добротность растёт с увеличением L:

    Q = 1 R L C {\displaystyle Q={\frac {1}{R}}{\sqrt {\frac {L}{C}}}} , где R - активное сопротивление контура.

    Для параллельного контура:

    Q = R e C L {\displaystyle Q=R_{e}{\sqrt {\frac {C}{L}}}} ,

    где R e = L C R L + C {\displaystyle R_{e}={\frac {L}{CR_{L+C}}}} , которое в последовательном контуре включено последовательно с L и C, а в параллельном - параллельно им. Малые потери (то есть высокая добротность) означают, что в последовательном контуре мало, а в параллельном - велико. В низкочастотном последовательном контуре R e {\displaystyle R_{e}} легко обретает физический смысл - это в основном активное сопротивление провода катушки и проводников цепи.

    Подвозбудителя генератора (сам генератор при этом выдаёт 400 Гц). При отклонении частоты от номинальной реактивное сопротивление одного из контуров становится больше, чем другого, и БРЧ выдаёт на привод постоянных оборотов генератора управляющий сигнал для коррекции оборотов генератора. Если частота поднялась выше номинальной - сопротивление второго контура станет меньше, чем первого, и БРЧ выдаст сигнал на уменьшение оборотов генератора, если частота упала - то наоборот. Так поддерживается постоянство частоты напряжения генератора при изменении оборотов двигателя .

    Электрический колебательный контур является обязательным элементом любого радиоприемника, независимо от его сложности. Без колебательного контура прием сигналов радиостанции вообще невозможен.

    Простейший электрический колебательный контур (рис. 20) представляет собой замкнутую цепь, состоящую из катушки индуктивности L и конденсатора С. При некоторых условиях в нем могут возникать и поддерживаться электрические колебания.

    Чтобы понять сущность этого явления, проведи сначала несколько опытов с нитяным маятником (рис. 21). На нитке длиной 100 см подвесь шарик, слепленный из пластилина, или иной грузик массой в 20...40 г. Выведи маятник из положения равновесия и, пользуясь часами с секундной стрелкой, сосчитай, сколько полных колебаний он делает за минуту. Примерно 30. Следовательно, собственная частота колебаний этого маятника равна 0,5 Гц, а период (время одного полного колебания) — 2 с. За период потенциальная энергия маятника дважды переходит в кинетическую, а кинетическая в потенциальную.

    Укороти нить маятника наполовину. Собственная частота колебаний маятника увеличится в полтора раза и во столько же уменьшится период колебаний. Вывод: с уменьшением длины маятника частота его собственных колебаний увеличивается, а период пропорционально уменьшается.

    Изменяя длину подвески маятника, добейся, чтобы его собственная частота колебаний составляла 1 Гц (одно полное колебание в секунду). Это должно быть при длине нитки около 25 см. В этом случае период колебаний маятника будет равен 1 с.

    Колебания нитяного маятника являются затухающими. Свободные колебания любого тела всегда затухающие. Они могут стать незатухающими только в том случае, если маятник в такт с его колебаниями слегка подталкивать, компенсируя таким образом ту энергию, которую он затрачивает на преодоление сопротивления, оказываемого ему воздухом и силой трения.

    Частота собственных колебаний маятника зависит от его массы и длины подвески.

    Теперь натяни горизонтально нетолстую веревку или шпагат. Привяжи к растяжке тот же маятник (рис. 22). Перекинь через веревку еще один такой же маятник, но с более длинной ниткой. Длину подвески этого маятника можно изменять, подтягивая рукой свободный конец нитки. Приведи его в колебательное движение. При этом первой маятник тоже станет колебаться, но с меньшим размахом (амплитудой). Не останавливая колебаний второго маятника, постепенно уменьшай длину его подвески — амплитуда колебаний первого маятника будет увеличиваться.

    В этом опыте, иллюстрирующем резонанс колебаний, первый маятник является приемником механических колебаний, возбуждаемых вторым маятником — передатчиком этих колебаний. Причиной, вынуждающей первый маятник колебаться, являются периодические колебания растяжки с частотой, равной частоте колебаний второго маятника. Вынужденные колебания первого маятника будут иметь максимальную амплитуду лишь тогда, когда его собственная частота совпадает с частотой колебаний второго маятника.

    Собственная частота, вынужденные колебания и резонанс, которые ты наблюдал в этих опытах, — явления, свойственные и электрическому колебательному контуру.

    Электрические колебания в контуре. Чтобы возбудить колебания в контуре, надо его конденсатор зарядить от источника постоянного напряжения, а затем отключить источник и замкнуть цепь контура (рис. 23). С этого момента конденсатор начнёт разряжаться через катушку индуктивности, создавая в цепи контура нарастающий по силе ток; а вокруг катушки индуктивности — магнитное поле тока. Когда конденсатор полностью разрядится и ток в цепи станет равным нулю, магнитное поле вокруг катушки окажется наиболее сильным — электрический заряд конденсатора преобразовался в магнитное поле катушки. Ток в контуре некоторое время булет идти в том же направлении, но уже за счет убывающей энергии магнитного поля, накопленной катушкой, а конденсатор начнет заряжаться. Как только магнитное поле катушки исчезнет, ток в контуре на мгновение прекратится. Но к этому моменту конденса-fop окажется перезаряженным, поэтому в цепи контура вновь пойдет ток, но уже в противоположном направлении. В результате в контуре возникают колебания электрического тока, продолжающиеся до тех пор, пока энергия, запасенная конденсатором, не израсходуется на преодоление сопротивления проводников контура.

    Электрические колебания, возбужденные в контуре зарядом конденсатора, свободные, а следовательно, за-тухающие. Зарядив снова конденсатор, в контуре мож-но возбудить новую серию затухающих колебаний.

    Подключи к батарее 3336Л электромагнитные головные телефоны. В момент замыкания цепи в телефонах появится звук, напоминающий щелчок. Такой же щелчок слышен и в момент отключения телефонов от батареи. Заряди от этой батарей бумажный конденсатор возможно большей емкости, а затем, отключив батарею, подключи к нему те же телефоны. В телефонах услышишь короткий звук низкого тона. Но в момент отключения телефонов от конденсатора такого звука не будет.

    В первом из этих опытов щелчки в телефонах являются следствием одиночных колебаний их мембран при изменении силы магнитных полей катушек электромагнитных систем телефонов в моменты появления и исчезновения тока в них. Во втором опыте звук в телефонах — это колебания их мембран под действием переменных магнитных полей катушек телефонов. Они создаются короткой очередью затухающих колебаний очень низкой частоты, возбужденных в. этом контуре после подключения заряженного конденсатора.

    Собственная частота электрических колебаний в контуре зависит от индуктивности его катушки и емкости конденсатора. Чем они больше, тем ниже частота колебаний в контуре и, наоборот, чем они меньше, тем выше частота колебаний в контуре. Изменяя индуктивность (число витков) катушки и емкость конденсатора, можно в широких пределах изменять частоту собственных электрических колебаний в контуре.

    Чтобы вынужденные колебания в контуре были незатухающими, контур в такт с колебаниями в нем надо пополнять дополнительной энергией. Для приемного контура источником этой энергии могут быть электрические колебания высокой частоты, индуцируемые радиоволнами в антенне радиоприемника.

    Контур в радиоприемнинике. Если к колебательному контуру подключить антенну, заземление и цепь, составленную из диода, выполняющего роль детектора, и телефонов, то получится простейший радиоприемник — детекторный (рис. 24).

    Для колебательного контура такого приемника используй катушку индуктивности, намотанную тобой еще при прохождении третьего практикума. Конденсатор переменной емкости (G 2) для плавной и. точной настройки контура на частоту радиостанции сделай из двух жестяных пластин, припаяв к ним проводники. Между пластинами, чтобы они не замыкались, положи лист сухой писчей или газетной бумаги. Емкость такого конденсатора будет тем больше, чем больше площадь взаимного перекрытия пластин и чем меньше расстояние между ними. При размерах пластин 150X250 мм и расстоянии между ними, равном толщине бумаги, наибольшая емкость та?-кого конденсатора может быть 400...450 пФ, что тебя вполне устроит, а наименьшая несколько пикофарад. Антенной-времянкой (W 1) может служить хорошо изолированный от земли и от стен здания отрезок провода длиной 10...15 м, подвешенный на высоте 10...12 м. Для заземления можно использовать металлический штырь, вбитый в землю, трубы водопровода или центрального отопления, имеющие, как правило, хороший контакт с землей.

    Роль детектора (VI ) может выполнять точечный диод, например, серии Д9 или Д2 с любым буквенным индексом. В1 — головные телефоны электромагнитные, высоко-омные (с катушками электромагнитов сопротивлением постоянному току 1500...2200 Ом), например, типа ТОН-1. Параллельно телефонам подключи конденсатор (СЗ) емкостью 3300...6200 пФ.

    Все соединения должны быть электрически надежными. Лучше, если они пропаяны. Из-за плохого контакта в любом из соединений приемник работать не будет. Приемник не будет работать и в том случае, если в его цепях будут короткие замыкания или неправильные соединения.

    Настройка контура приемника на частоту радиостанции осуществляется: грубая — скачкообразным измене-нием числа витков катушки, включаемых в контур (на рис. 24 показано штриховой линией со стрелкой); плав-ная и точная — изменением емкости конденсатора путем смещения одной из его пластин относительно другой. Если в городе, крае или области, где ты живешь, работает радиостанция длинноволнового диапазона (735,3...2000 м, что соответствует частотам 408...150 кГц), то в контур включай все витки катушки, а если станция средневолнового диапазона (186,9...571,4 м, что собтвет-ствует частотам 1,608 МГц.„525 кГц), то только часть ее витков.

    При одновременной слышимости передач двух радиостанций включи между антенной и контуром конденсатор емкостью 62...82 пФ (на рис. 24 — конденсатор С1, показанный штриховыми линиями). От этого громкость звучания телефонов несколько снизится, но селективность (избирательность) приемника, то есть его спог собность отстраиваться от мешающих станций, улучшится.

    Как работает такой приемник в целом? Модулированные колебания высокой частоты, индуцируемые-в проводе антенны радиоволнами многих станций, возбуждают в контуре приемника, в который входит и сама антенна, колебания разных частот и амплитуд. В контуре же возникнут наиболее сильные колебания только той частоты, на которую он настроен в резонанс. Колебания всех других частот контур ослабляет. Чем лучше (добротнее) контур, тем четче он выделяет колебания, соответствующие колебаниям его собственной частоты, и больше их амплитуда.

    Детектор также важный элемент приемника. Обладая односторонней проводимостью тока, он выпрямляет высокочастотные модулированные колебания, поступающие к нему от колебательного контура, преобразуя их в колебания низкой, то есть звуковой, частоты, которые телефоны преобразуют в звуковые колебания.

    Конденсатор СЗ, подключенный параллельно телефонам, — вспомогательный элемент приемника: сглаживая пульсации тока, выпрямленного детектором, он улучшает условия работы телефонов.

    Проведи несколько экспериментов.

    1. Настроив приемник на радиостанцию, введи внутрь катушки толстый гвоздь, а затем конденсатором переменной емкости подстрой контур, чтобы восстановить прежнюю громкость звучания телефонов.

    2. Сделай то же самое, но вместо гвоздя возьми медный или латунный стержень.

    3. Подключи к контурной катушке вместо конденсатора переменной емкости такой конденсатор постоянной емкости (подбери опытным путем), чтобы приемник оказался настроенным на частоту местной станции.

    Запомни конечные результаты этих экспериментов. Вводя внутрь катушки металлический сердечник, ты, конечно, заметил, что собственная частота контура при этом изменяется: стальной сердечник уменьшает собственную частоту колебаний в контуре, а медный или латунный, наоборот, увеличивает. Судить об этом можно по тому, что в первом случае для подстройки контура на сигналы той же станции емкость контурного конденсатора пришлось уменьшить, а во втором увеличить.

    Контурная катушка с высокочастотным сердечником. Подавляющее большинство контурных катушек современных приемников имеет высокочастотные, обычно ферритовые, сердечники в виде стержней, чашек или колец. Ферритовые стержни, кроме того, являются обязательными элементами вхрдных контуров всех транзисторных переносных и так называемых «карманных» приемников.

    Высокочастотный сердечник как бы «сгущает» линии магнитного поля катушки, повышая ее индуктивность и добротность. Подвижный сердечник, кроме того, позволяет регулировать индуктивность катушки, что используют для подстройки контуров на заданную частоту, а иногда даже настраивать контуры на частоты радиостанций. В порядке эксперимента сделай приемник с колебательным контуром, настраиваемым ферритовым стержнем марки 400НН или 600НН длиной 120...150 мм (рис. 25). Такие стержни используют Для магнитных антенн транзисторных приемников. Из полоски бумаги, обернув ею стержень 3...4 раза, склей и хорошо просуши гильзу длиной 80...90 мм. Внутрь гильзы стержень должен входить свободно. Вырежь из картона 9... 10 колец и приклей их к гильзе на расстоянии 6...7 мм друг от друга. На получившийся секционированный каркас -намотай 300...350 витков лровода ПЭВ, ПЭЛ или ПЭЛШО 0,2...0,25, укладывая его по 35...40 витков в каждой секции. От 35...40-го -и от 75...80-го витков сделай два отвода в виде петель, чтобы иметь возможность изменять число витков катушки, включаемых в контур.

    Подключи к катушке антенну, заземление и цепь детектор — телефоны. Чем больше витков катушки будет участвовать в работе контура и глубже внутрь катушки будет введен ферритовый стержень, тем на большую длину волны может быть настроен приемник.

    Детекторный приемник работает исключительно благодаря электромагнитной энергии, излучаемой антенной передатчика радиостанции. Поэтому телефоны звучат негромко. Чтобы повысить громкость работы детекторного приемника, к нему надо добавить усилитель, например транзисторный.

    Литература: Борисов В. Г. Практикум начинающего радиолюбителя.2-е изд., перераб. и доп. — М.: ДОСААФ, 1984. 144 с., ил. 55к.

    Применение последовательного колебательного контура

    Энергетические соотношения в последовательном колебательном контуре при резонансе

    Влияние внутреннего сопротивления источника сигнала на АЧХ контура

    Последовательный колебательный контур

    Резонансные явления в электрических цепях

    Последовательный КОЛЕБАТЕЛЬНЫй КОНТУР

    ЛЕКЦИЯ 15

    План лекции:

    Резонансом электрической цепи называют явление обращения в нуль её реактивного сопротивления. Частоту, на которой имеет место этот факт, называют резонансной. Резонанс может возникать только в цепях, имеющих хотя бы по одному реактивному элементу разного типа проводимости.

    Резонансы могут иметь место как в отдельных ветвях электрической цепи, так и в контурах. Поэтому в цепях с несколькими реактивными элементами разного типа может быть несколько резонансных частот.

    В радиотехнике резонансные явления в электрических цепях широко используют для выделения полосы частот и усиления сигналов.

    Цепь с последовательным соединением элементов называют последовательным колебательным контуром. Так как реальные индуктивности и ёмкости имеют потери, то это учтено на схеме последовательно включенным в цепь малым эквивалентным сопротивлением потерь (рис. 15.1).

    Полное сопротивление этой цепи будет равно

    где – модуль, и – активная и реактивная составляющие, – фаза полного сопротивления.

    Рис. 15.1. Последовательный колебательный контур

    На резонансной частоте реактивная составляющая полного сопротивления обращается в нуль, то есть выполняется условие

    Отсюда получаем формулу для расчёта резонансной частоты через параметры последовательного колебательного контура

    На частотах меньше резонансной реактивное сопротивление цепи отрицательно, то есть носит ёмкостный характер, так как сопротивление ёмкости больше сопротивления индуктивности и является преобладающим. На частотах больше резонансной реактивное сопротивление последовательного колебательного контура положительно и имеет индуктивный характер, так как в этом случае сопротивление индуктивности становится больше сопротивления ёмкости.

    Преобразуем выражение (15.1) с учётом введённого понятия резонансной частоты:

    Величину , имеющую размерность сопротивления, называют волновым или характеристическим сопротивлением контура, причём

    Отношение характеристического сопротивления к сопротивлению потерь называют добротностью контура и обозначают символом , а обратную ему величину – затуханием:


    Контуры низкого качества имеют добротность меньше 50. Для контуров среднего качества выполняется соотношение , для контуров хорошего качества – и для контуров высокого качества – .

    Выражение в круглых скобках в формуле (15.4) обозначают греческой буквой и называют относительной расстройкой контура

    По смыслу, относительная расстройка характеризует в относительных единицах отклонение частоты источника сигнала от резонансной частоты контура.

    С учётом введённых обозначений формулу сопротивления (15.4) можно записать в более компактной форме:

    Ток в цепи можно найти по закону Ома:

    где – начальная фаза источника эдс, – фаза полного сопротивления в другой форме записи.

    На резонансной частоте ток максимален и равен

    Нормированная амплитудно-частотная (АЧХ)

    и фазочастотная характеристики (ФЧХ)

    тока приведены на рис. 15.2.

    На резонансной частоте относительная расстройка (15.7) равна нулю. Поэтому

    Следовательно, на резонансной частоте амплитуды напряжений на индуктивности и ёмкости равны друг другу и в раз больше амплитуды эдс:

    Поэтому резонанс в последовательном колебательном контуре называют резонансом напряжений. Векторная диаграмма напряжений для контура на частоте резонанса приведена на рис. 15.3.

    Область частот, на границах которой ток уменьшается в раз относительно своего максимального значения, называют полосой пропускания. На границах полосы пропускания согласно формуле (15.9) выполняется условие

    Рис. 15.2. Амплитудно-частотная (а) и фазочастотная (б) характеристики тока в последовательном колебательном контуре

    Колебательный контур - электрическая цепь, содержащая катушку индуктивности, конденсатор и источник электрической энергии. При последовательном соединении элементов цепи колебательный контур называется последовательным, при параллельном − параллельным.

    Колебательный контур - простейшая система, в которой могут происходить свободные электромагнитные колебания.

    Резонансная частота контура определяется так называемой формулой Томсона:

    ƒ = 1/(2π√(LC))

    При слишком малой индуктивности и большой емкости будет падать резонансное сопротивление контура, что приведет к ухудшению его избирательных свойств, а в схеме резонансного усилителя упадет усиление каскада. При слишком малой емкости и большой индуктивности катушка будет содержать большое количество витков, добротность ее будет уменьшаться, а собственная емкость расти, в результате она может сравняться с емкостью контурного конденсатора, что не допустимо. Также на настройку контура будет влиять емкость монтажа, ведь она соизмерима со значением С. Исходя из вышеуказанного, рекомендую выбирать соотношение емкости к индуктивности примерно как 100000: 1 в абсолютном значении, что подходит для большинства контуров.

    Например, для частоты 10,7 МГц оптимальным будет С=47 пФ и L= 4,7 мкГн, а для частоты 465 кГц оптимальные С=1000пФ и L=117мкГн.

    Исходя из всего выше сказанного, онлайн калькулятор позволяет подобрать значения емкости и индуктивности в пределах ±20% от оптимального значения.

    Для расчета частоты резонанса колебательного контура LC заполните предложенную форму:

    Расчёт ёмкости для колебательного контура LC

    C = 1/(4𲃲L)

    Расчёт индуктивности для колебательного контура LC

    L = 1/(4𲃲C)

    • Похожие статьи
    • - На рисунке показана схема приставки к частотомеру позволяющая измерять индуктивность от 100 нГн до 100 мГн и емкость конденсаторов от 1 пФ до 0,1 мкФ с достаточно большой точностью. Схема собрана на компараторе LM311 и нескольких пассивных элементах. Для работы с приставкой Вам понадобится...
    • - Приемник может быть перестроен в диапазоне 70...150 МГц без изменения номиналов подстроечных элементов. Реальная чувствительность приемника около 0,3 мкВ, напряжение питания 9 В. Следует заметить, что напряжение питания МС3362 - 2...7 В, а МС34119 2...12 В, поэтому МС3362 питается через...
    • - Выходная мощность 1,5Вт на нагрузке 60Ом. Задающий генератор с кварцевой стабилизацией частоты на T1, при этом последовательно с кварцем включен варикап с помощью которого производится частотная модуляция. Начальное смещение на варикап задается делителем R8 R9. Кварцевый резонатор на частоту...
    • - Данный усилитель обеспечивает усиление в зависимости от частоты - 18(50МГц) до 14(230МГц)дБ. В нем применен малошумящий полевой транзистор, что обеспечивает высокую чувствительность. Входной контур образован индуктивностью L1 и емкостями варикапов, диодов и транзистора, обеспечивает частотную...
    • - Применение автоматической регулировки тока покоя лампы по огибающей однополосного сигнала позволяет значительно снизить его и приблизить режим работы усилителя к идеальному. Вторым, не менее важным, узлом в усилителе является стабилизатор напряжения экранной сетки, которому в любительском...

    Чтобы понять причину возникновения резонанса необходимо разобраться как течёт ток через конденсатор и катушку индуктивности.
    При протекании тока через катушку индуктивности напряжение опережает ток. Давайте рассмотрим этот процесс подробнее, когда напряжение на концах катушки максимально, ток через катушку не течет, по мере уменьшения напряжения, ток увеличивается и когда напряжение на концах катушки равно нулю, ток через катушку максимален. Далее, напряжение уменьшается и достигает минимума, ток при этом равен нулю. Из этого можно сделать вывод, что ток через катушку максимален, когда напряжение на её концах равно нулю и ток равен нулю, когда напряжение на её концах максимально. Таким образом, если сопоставить графики изменения напряжения и тока, создаётся впечатление, что напряжение опережает ток на 90 градусов. Это можно увидеть на рисунке ниже.

    Совсем противоположно катушке индуктивности ведет себя конденсатор. Когда напряжение на концах конденсатора равно нулю, ток через него максимален, по мере зарядки конденсатора ток через него уменьшается, это связано с тем, что разность потенциалов между конденсатором и источником напряжения уменьшается, а чем меньше разность потенциалов, тем меньше ток. Когда конденсатор полностью заряжен ток через него не течет так, как нет разности потенциалов. Напряжение начинает уменьшаться и становится равно нулю, при этом ток максимален только течет в другом направлении, далее напряжение достигает минимума и ток через конденсатор снова не течет. Делаем вывод, что ток через конденсатор максимальный когда напряжение на его обкладках равно нулю и ток равен нулю когда напряжение на конденсаторе минимально. Если сопоставить графики изменения тока и напряжение, создается впечатление, что ток опережает напряжение на 90 градусов. Это можно увидеть на рисунке ниже.


    На резонансной частоте для контура, состоящего из конденсатора и катушки индуктивности, неважно параллельный он или последовательный, их сопротивления равны и сдвиг фаз между напряжением и током равен нулю. Ведь действительно если подумать, то в конденсаторе ток опережает напряжение на 90 градусов, то есть +90 градусов, а в катушке индуктивности ток отстает от напряжения на 90 градусов, то есть -90 градусов и если сложить их получится нуль. Для пары, конденсатор и катушка индуктивности параллельный и последовательный резонанс возникают на одной и той же частоте.

    Давайте рассмотрим резонанс в последовательном колебательном контуре.


    На верхнем графике изображена зависимость тока от времени, протекающего через контур, ниже два графика это напряжения, на конденсаторе и катушке, самый нижний это сумма напряжений на катушке и конденсаторе. Видно, что суммарное напряжение на конденсаторе и катушке индуктивности равно нулю, также говорят, что сопротивление последовательного колебательного контура на резонансной частоте стремится к нулю.
    Давайте соберем простую схему, изображенную на рисунке.


    Сопротивление резистора должно быть больше выходного сопротивления генератора, то есть больше 50 Ohm, я взял первый попавшийся.
    Расчетная резонансная частота такого контура 270 KHz, но так как номиналы имеют определенный допуск, который обычно указывается в процентах, придется ее подобрать. Подбирать будем исходя из того, что сопротивления катушки индуктивности и конденсатора на резонансной частоте равны, а так как они соединены последовательно, то равны и падения напряжений. Первый канал показывает напряжение на контуре, второй канал напряжение на катушке, канал Math показывает разность между первым и вторым каналом, а по сути напряжение на конденсаторе. Причина по которой, я не подключил щуп осциллографа параллельно конденсатору, будет подробно описана в следующей статье. Если кратко, то есть правило подключать земляной крокодил только к земле, если осциллограф и исследуемая схема питаются от бытовой сети и имеют заземление. Делается это, для того чтобы не спалить исследуемую схему и осциллограф.



    На осциллограммах видно, что на резонансной частоте падение напряжения на катушке и конденсаторе равны и противоположны по знаку, а суммарное падение напряжения на контуре стремится к нулю. В последовательном колебательном контуре на резонансной частоте напряжение на катушке и конденсаторе выше чем на генераторе. Давайте увеличим частоту и посмотри что изменится.


    Видим, что напряжение на катушке увеличилось потому, что увеличилось её сопротивление, так как оно прямо пропорционально зависит от частоты. Напряжение на конденсаторе уменьшилось потому, что его сопротивление с ростом частоты уменьшается. Теперь уменьшим частоту.


    Видим, что напряжение на конденсаторе увеличилось, а на катушке уменьшилось, также надо отметить, что разность фаз между сигналами равна 180 градусам.

    Давайте теперь рассмотрим резонанс в параллельном контуре, ситуация аналогичная с последовательным контуром, только в последовательном мы рассматривали напряжения, а в параллельном будем рассматривать токи.


    Видим, что токи сдвинуты относительно друг друга на 180 градусов, а их сумма равна нулю, то есть ток через контур не течет, а его сопротивление стремится к бесконечности. Параллельный колебательный контур используют как полосно-заграждающий фильтр, радиолюбители называют его фильтр- пробка. Он не пропускает напряжение частота которого равна его резонансной частоте. Давайте соберем простую схему, изображенную на картинке ниже и посмотрим как будет изменяться напряжение на концах контура в зависимости от частоты.


    Так как конденсатор и индуктивность те же, что и в прошлом эксперименте резонансная частота контура та же.


    На резонансной частоте сопротивление контура стремится к бесконечности, следовательно и напряжение будет максимально. Давайте уменьшим частоту.


    Видим, что напряжение на контуре уменьшилось, произошло это потому, что сопротивление катушки уменьшилось и она зашунтировала конденсатор.
    Теперь давайте увеличим частоту.


    С ростом частоты сопротивление конденсатора уменьшилось и он зашунтировал катушку.
    Пожалуй, это всё, что хотелось рассказать про резонанс.